
Self-Study Exercises I

Epidemiologic Analysis Using R

C DiMaggio, with edits from S Mooney

1

The best way to start getting comfortable with a new language is to use it. This
series of exercises reviews some of the content we’ve discussed during lecture, and
introduces some other basic concepts about working with data in R. It’s important
that you actively type in the commands and review the results rather than just
read. Try to briefly answer the questions that come up along the way. Don’t worry
if everything doesn’t make a lot of sense during the earlier exercises. It will. And
there’s an answer key available if you become too frustrated.

Start R and open a new script document. The approach may differ in minor details
depending on whether you are on a Windows or Mac machine.

1 working with objects

1.1 vectors

A vector is one of the most basic R objects, and a good place to start using R
for epidemiology. Consider the following epidemiologic scenario taken from Tomas
Aragon’s book ”Applied Epdemiology Using R”. In 2003, 111 airplane passengers
were exposed to a fellow passenger who was subsequently diagnosed with Severe
Acute Respiratory Syndrome (SARS). Eight of 23 passengers who sat ”close” to the
index case 1 developed SARS. Ten of 88 passengers who sat ”far” from the index
case also developed SARS. Work through the following example to get a feel for
conducting simple epidemiological calculations in R using nothing but two vectors.

1.1.1 using the assignment and concatenation operators to create vec-
tors

Use the assignment operator (¡-), and the concatenation function (c()) to create two
vectors.

Create a vector called case that consists of two numbers, the number of exposed
people who developed SARS, and the number of unexposed people who developed
SARS. 2

Using the same approach, create a second vector called noncase that consists of the
number of exposed people who did not develop disease, and the number of unexposed
people who did not develop disease. 3.

1We won’t go into how close is ”close”.
2As an additional step, try to name each element in the vector by putting the name in quotation

marks and using an equal sign for the number assigned to that name.
3Again, try to name each element, using the same names you used for the noncase vector

2

Print each vector to your console (screen)

1.1.2 combining vectors to create tables

Combine these two vectors to create a standard 2x2 Epi table, where the upper left
cell (cell a) is the number of exposed cases of disease. You will need to use cbind()
or rbind(). If you want to see a help page on how they work, simply type and enter
?cbind or ?rbind.

Which function (cbind or rbind) results in the correct table?

1.1.3 creating vectors and tables from individual observations

You won’t often work directly with totals like in the SARS example. Usually, you’ll
a data set of individual observations which you need to total up. Let’s go through
the process of creating a table from these kind of data.

In this first step, you’ll create a data set of observations using the rep() function
which repeats the first argument by the number of times specified in the second
argument. Begin by trying this.

rep("hello", 5)

To create the data set from which you’ll make vectors and a table, we’ll walk through
the process of repeating the character strings ”case” and ”noncase” to match the
numbers in the SARS example. 4

First, create a vector called outcome that consists of a total of 111 elements for
the 111 people in the SARS example. Use the concatenation function to create the
vector by first repeating the word ”case” 18 times (this is because there were 8 cases
in the exposed group and 10 cases in the unexposed group), and then repeating the
word ”noncase” 93 times (because 15 of the exposed and 78 of the unexposed people
did not develop SARS). View or print out to your screen the vector outcome.

It’s a little trickier to create the vector for exposures. We have to ensure that we
have a vector that aligns with the outcome vector so that each case or noncase of
disease correctly matches whether someone was exposed. We know that 8 of the
exposed and 10 of the unexposed people became cases, and that 15 of the exposed
and 78 of the unexposed did not become cases. The following code takes advantage
of the ability of the rep() function to take a vector as the first argument. We begin

4This is not something you are going to do in practice, but it a way to introduce you to working
with a couple of functions, while at the same time setting up a data set we can use to illustrate
creating a table from observations. Also, if you submit questions to lists like StackOverflow (which
I recommend), providing toy data sets like this facilitates answers.

3

http://stackoverflow.com/

by creating a temporary vector of the words ”exposed” and ”unexposed”. We then
feed that to the rep() function, which will cycle through those words in precisely
the fashion we need. Again, type and submit the ”exposure” vector you created to
see what R did.5

tmp <- c("exposed", "unexposed")

exposure <- c(rep(tmp, c(8, 10)), rep(tmp, c(15, 78)))

exposure

Bind the two vectors to create a single data set of observations called sars.obs

Then look at the first 4 rows of this new data object. To do this you will index the
first 4 rows of the data object called sars.obs by using brackets.

sars.obs[1:4,]

The bracket notation notation 1:4 is shorthand for the range 1 to 4. The comma
after the number 4 is very important. It defines the dimension of the table from
which you want the observations. Here we are interested in seeing the first 4 rows.
Rows are the first dimension in an index and come before the first comma. Columns
are the second dimension in an index, and come after the first comma. Compare
the results of the indexing operation above to this one.

sars.obs[, 2]

We’ll spend a lot of time talking about indexing in R.

The table() function can be used to tally up the counts or frequencies of data ele-
ments. So, for example, the following command will return the number of times the
character strings ”case” and ”noncase” occur in the vector outcome.

table(outcome)

To cross-tabulate the counts of two sets of observations, submit both vectors to
table().

table(exposure, outcome)

As a quick example of how combining simple R functions can facilitate analysis,
let’s cross tabulate the two columns of the sars.obs data object, use indexing. Here,
we submit the first column of the sars.obs object, and the second column of the
sars.obs object, to the table function. table() then cross tabulates the frequencies
of those two vectors and returns a convenient table object.

sars.tab <- table(sars.obs[, 1], sars.obs[, 2])

sars.tab

5Don’t worry if this doesn’t make a whole lot of sense right now.

4

Notice that we are assigning the results of the table() function to a new object called
sars.tab. This is good practice and a common way of working in R, because it opens
up the possibility of exploring and manipulating the results, for example to calculate
odds ratios and their confidence intervals.

1.2 matrix

In the examples above, we created a matrix by combining two vectors. Here, we’ll
spend a little more time considering matrices in R.

In this next example, we consider the University Group Diabetes Program. This
was a placebo-controlled, multi-center randomized clinical trial from the early 1960’s
intended to establish the efficacy of treatments for type 2 diabetes. These data are
often used in epidemiology training programs. 6 There were a total of 409 patients.
204 patients received tolbutamide. 205 patients received placebo. 30 of the 204
tolbutamide patients died. 21 of the placebo patients died.

As opposed to combining vectors like we did above, we’ll create a 2x2 table from
the reported results directly using the matrix() function. Read the help file for
matrix by submitting ?matrix. Print the arguments for matrix() by using the args()
function.

args(matrix)

To get a feel for how the matrix() function works, let’s create the classic ”a,b,c,d”
2x2 table.

Disease No Disease
Exposed a b

Not Exposed c d

We’ll use the rownames and colnames functions to name the rows and columns.

tab <- matrix(c("a", "b", "c", "d"), 2, 2)

rownames(tab) <- c("Exposed", "unExposed")

colnames(tab) <- c("Disease", "noDisease")

tab

This is not what we wanted. The default behavior for matrix() is to fill the matrix
by columns. To override this behavior, you have to specify byrow=T

tab <- matrix(c("a", "b", "c", "d"), 2, 2, byrow = T)

rownames(tab) <- c("Exposed", "unExposed")

colnames(tab) <- c("Disease", "noDisease")

6There was a surprising and troubling excess of cardiac deaths in the treatment group that has
yet to be completely explained.

5

tab

At this point you have enough information to create a 2x2 table from the UGDP
data using the matrix() function. The table should contain the following data:

Disease No Disease
Exposed 30 174

Not Exposed 21 184

Once you’ve successfully created a table, try using the addmargins() function on it.

1.2.1 Calculating marginal totals

In this next bit of code, we’ll use a function called apply() to to create column totals
(dimension 2) of the treatment and placebo groups. We’ll then use this total to
calculate the proportion of deaths in each group.

Logically enough, apply() applies a procedure or function to one of the dimensions
of a matrix. We’ll discuss it in more detail during class, but for now, take a look at
the help file.

`?`(apply)

The function takes 3 arguments. First, we identify the matrix object that we want
it to work on, second we specify the dimension across which we want to apply the
procedure (1=rows, 2=columns), and third we define function to apply, e.g. sum,
mean, max, min, etc... Take a look at this code, then copy and run it.

coltot <- apply(dat, 2, sum)

risks <- dat["Deaths",]/coltot

odds <- risks/(1 - risks)

coltot <- apply(dat, 2, sum)

risks <- dat[1,]/coltot

odds <- risks/(1 - risks)

Notice that in the second line of code, we are indexing the matrix by the name of
the row rather than its number. We could also have used

risks <- dat[1,]/coltot

Note that because we are specifying a row, we still place the numbered index before
the comma. In the third line of the code, we used the ”risks” object we created, to
calculate the odds of disease for the treatment and placebo groups.

6

In the following code, we calculate two measures effect, the risk ratio and the odds
ratio. Then, we use the rbind() (r for row) function to display the results.7

risks

risk.ratio <- risks/risks[2]

odds.ratio <- odds/odds[2]

rbind(risks, risk.ratio, odds, odds.ratio)

These are the kinds of steps that make up the epidemiological functions you will
find in packages like epitools or epicalc.

1.3 lists

R functions are the ”procedures” you will use to analyze data. Unlike some other
programming languages, R functions return only the most minimal results. Those
results are, though, usually just the tip of the iceberg. Accessing the rich trove of
R results is part of the process of learning R. The basic approach is to save the
results of an R function as a named object. You can then use indexing (and other
functions) to access and manipulate the contents of the function-results object you
created.

Most folks who write functions for R use lists to collect up and store the results of
their functions. This is because a list is a very flexible R object that can store all
types of data. You will have to gain some facility with lists to get the most out of R
results. Let’s run through an example of working with a list object that arises from
applying a Fisher’s exact test.

We’ll work with a subset of the UGDP data table we created above. Create a table
by dividing the ”dat” table by 10. To do this, simply divide the ”dat” matrix object
by the number 10. Use the round() function to return the rounded result in whole
numbers. Use the assignment operator to save the operation as an object called
”dat2”

Now use the function fisher.test() on the ”dat2” data table to return a Fisher’s exact
test.

The result is (clearly) not statistically significant. Let’s take a closer look. Save the
results of the fisher exact test to an object named ”fish” (we could have called it
anything). You will have to re-run the function using an assignment operator.

Use the str() function to examine the structure of this object.

We see that it is a list consisting of 7 named elements. Using this information, we
can extract any of these elements. Try the following.

7You may want to take a moment to consider the implications of these results.

7

fish$estimate

Say you wanted (for some reason) to extract just the lower confidence limit? The
following will accomplish just that.

fish$conf.int[1]

In this case, the authors of the function were kind enough to store the results in a
named list. You can always use numeric indexing if you need to.

fish[[2]][1]

1.3.1 create your own function and store the results as a list

If you’re feeling brave, try the following.

orcalc <- function(x) {
or <- (x[1, 1] * x[2, 2])/(x[1, 2] * x[2, 1])

pval <- fisher.test(x)$p.value

list(data = x, odds.ratio = or, p.value = pval)

}

You just created your own function to calculate odds ratios. The function stores
results as a list.

Let’s step through what you just did. First, you used a function called function()
that, well, creates functions. Notice that unlike other functions, the parentheses are
followed by an additional set of (curly or squiggly) brackets. First you specify the
arguments in the parentheses. Here there is a single argument called ”x”. Then, in
the brackets, you define what happens to ”x” when you invoke the function.

You created an object called ”or” by cross-tabulating the elements of x. Notice that
presupposes that ”x” is a 2x2 matrix. If you try this function on something that is
not a matrix, it will fail spectacularly.8 Next you created an object called ”pval” by
applying the fisher.test() function to ”x” and, using the named list that results from
using fisher.test() to extract out just the p value. Lastly, you collect the results in
a list.

Let’s see if it worked by running it on the UGDP data table.

test <- orcalc(dat)

test

str(test)

8There are error message functions you can write that will inform users that they need to provide
a 2x2 matrix. Since you’re just writing this for yourself this isn’t necessary.

8

2 class and mode of an R object

The class and mode of an R object affects how it behaves and how we can work with
it. We’ll explore classes and modes by looking at one very special R object called
a ”factor”. A factor in R corresponds to what you might consider a categorical
variable to be in epidemiology, but with one important difference: factors are stored
as numeric, not character, vectors. Here, we create a data object of factors.

x <- factor(1:7)

mode(x)

class(x)

While the mode of x is numeric, it’s class is factor. This means that functions will
treat it based on it’s attributes as a factor. One important way factors are treated
differently is in statistical modeling. Modeling functions like lm() (for linear model)
will treat factors as categorical variables rather than continuous or numeric.

One important place where you may encounter factors is when you read in data. By
default, the read.table() function automatically converts any character or ”string”
variable it encounters into a factor. This can be a convenience in some settings.
Or a colossal headache in others. Imagine every patient and street name in a data
file being it’s own numbered factor. If you don’t know this is going on, it can
cause otherwise inexplicable behavior. I recommend using the read.table() option
”stringsAsFactors=FALSE” to turn off this behavior. You can always convert a
variable to a factor if you need to.

R provides many ways to work with the class and mode of an object. We will
explore some of them. Begin by creating a data object called ”y” that consists
of three characters: ”1”, ”2” and ”3”. Placing what would otherwise be read as
numbers in quotations makes them characters. Remember to use the concatenation
operator and to separate each item by a comma.

Use the functions mode() and class() to explore the object ”y”

You see that for simple objects, the class is usually the same as the mode. Try to
use the sum() function on ”y”.

sum(y)

Functions will only work on objects for which they are intended. It does not make
sense to try to add up characters, and R tells you so in its own inimitable style.

The as.xxx() function allows you to change an object’s mode.9 Try the sum()
function again, only this time provide as.numeric(y) as the argument.

9xxx stands in for mode names like ”numeric”, ”character”, ”factor”, etc...

9

Now, try to sum up the factor object called ”x” that you created above.

sum(x)

sum(as.numeric(x))

3 ordered factors

It’s been my experience that factors can cause unwanted and sometimes inexplicable
behavior in R, and unless they are absolutely necessary, I avoid them. One place
where factors are necessary is for ordinal variables where you will likely want an
ordered factor. Here we step through some material to make sense of ordered factors.

3.1 months example

Begin by creating a vector of month names called ”mths”

mths = c("March", "April", "January", "November", "January",

"September", "October", "September", "November",

"August", "January", "November", "November", "February",

"May", "August", "July", "December", "August",

"August", "September", "November", "February",

"April")

Check the class and mode of this vector.

Examine a frequency table of the vector ”mths”. What is the most commonly named
month? In what order is the vector?

To arrange these month names in an order that makes more sense, we will need
to convert the vector from character to factor, and then order the factors. Begin
by reading the help page for the factor() function. Pay particular attention to the
options for ”levels=” and ”ordered=”

`?`(factor)

Convert the character vector ”mths” to a factor called ”f.mths” by submitting the
following code.

f.mths = factor(mths, levels = c("January", "February",

"March", "April", "May", "June", "July", "August",

"September", "October", "November", "December"),

ordered = TRUE)

Print out a frequency table of ”f.mths”

10

What is the mode of ”f.mths”? What is its class?

This is important information. The mode of ”f.mths” differs from its class. The
mode of an R object (e.g. numeric, character, logical) tells us its underlying data
type. The class of an R object tells us how the object will be treated by functions.

An ordered factor is ordered by number, and that number is meaningful in R oper-
ations. In the factor vector ”f.mths”, ”January”, because it is ordered first, carries
a lower value than ”February”.

Let’s test this. First, look at the first and second elements of the object ”mths”.

mths[1]

mths[2]

Try to compare them with the following logical statement.

as.numeric(mths[1]) < as.numeric(mths[2])

Now, repeat the two previous bits of code with ”f.mths”.

f.mths[1]

f.mths[2]

as.numeric(f.mths[1]) < as.numeric(f.mths[2])

Try ”adding” January to February.

We can coerce the ”f.mths” object to behave as numbers by using as.numeric(). 10

as.numeric(f.mths)[1] + as.numeric(f.mths)[2]

mean(as.numeric(f.mths))

This isn’t possible with the character-mode ”mths” object.

3.2 ses example

As I mentioned, in general, I will reserve the use of factors to settings where or-
der matters. Because such ordinal variables can be important to epidemiological
analyses, let’s take one more look at the use of ordered factors in R. Consider the
following data which consists of 100 observations of a three-level ordinal variable
that represents socioeconomic status.

ses <- sample(c("Low", "Medium", "High"), 100, replace = TRUE)

Print out a table of the variable ”ses”.

10Getting ordered factors to behave as numbers can sometimes be a bit tricker than just using
as.numeric(). See this helpful post.

11

http://www.stat.berkeley.edu/classes/s133/factors.html

Using the approach we took with the months variable above, create an ordered factor
called ”f.ses”. Print out a table of the ordered factor vector.

4 exploring data sets

4.1 the infertility data set

Rather than entering data manually, or creating your own vectors and matrices, you
may be working with existing data sets. R comes with some data sets pre-loaded
that are useful in learning how to navigate data frames To view all the data sets
available to you, submit the command data().

Scroll through and read the brief descriptions of the data sets. We will look at the
”infert” data set as an example. (You can follow along or use a different data set of
your choice). You can find out more about the data set by submitting ?infert.

Read the description. To use a data set, you have to load or copy it as an object
into your work space or active directory with the data() function.

data(infert)

When first working with a data object, it helps to have some idea of its over all
structure (str()). Use these this function on the ”infert” data set. 11

• What kind of object is the infertility data set?

• How many observations and how many variables are in the infertility data set?

It is also often helpful to look at the data set itself. If you’re used to working
with spreadsheet programs like Excel, where the data are displayed by default,
transitioning to a program like R, where the data are tucked away in memory,
can be difficult. In R (and other programs, like SAS) you have to issue explicit
commands to display the data set. The simplest way to do that is to type the name
of the data object. Try this with the ”infert” data frame.

This quickly becomes unwieldy with large data sets. Usually it’s sufficient, when first
becoming acquainted with a data set, to display the first few rows of observations.
Rows are the first dimension when indexing an R data frame. Try the following
command (the comma is important).

infert[1:5,]

As is often the case, someone came up with a shortcut. Try the head() function on
the ”infert” data set.

11str() may be the single most useful function in R.

12

4.2 preliminary statistics

After familiarizing yourself with a data set, it’s a good idea to tabulate some frequen-
cies and calculate some descriptive statistics to begin to understand the information.

We may want to know the mean age of the women in the study.

mean(infert$age)

Notice what we did. The convention in R is to identify a variable by the dataset
name followed by the dollar sign ($) and the variable name. 12 You may create or
come across data sets that do not have named variables or columns. In that case
you would use indexing. Calculate the mean parity for the infertility data set using
the index for that column.

Verify that you correctly identified the ”parity” column by using the dollar-sign
naming convention to calculate the mean parity.

The fivenum() function returns more detailed information about continuous vari-
ables (minimum, first quartile, median, third quartile, maximum). Calculate the
five-number summary for age and parity.

You will find that in R, there are multiple ways of getting the same information
and that there are often convenience functions based on other, more elementary
functions. For example, the summary() function returns information about a con-
tinuous variable that includes the 5-number summary. Compare the results of the
summary() function for age to those of mean and fivenum() above.

4.3 frequency tables

Epidemiologists spend a lot of time counting things. The most elementary way to
count up occurrences of some outcome in an R data set is with the table() function.

To specify a cross tabulation, simply separate the two variables by a comma. Try
requesting a cross tabulation of parity by education.

4.4 installing and using a package

If you are coming from SAS (as I did), you can think of table() as similar to PROC
FREQ. It is, though, rather a bare-bones experience. Usually this a strength, as
R allows you to the flexibility to explore and manipulate results, rather than re-
turning verbose output. In this case, I prefer the SAS output. And as is often the

12You can attach() a data set to avoid having to type the dataset$ prefix, but can cause problems
down the line, and you must remember to detach() it as you move along in your analyses

13

case, someone has already thought of that and created a function to return a more
satisfying SAS-like cross tabulation. It’s called CrossTable() and it’s in the package
”gmodels”. User-contributed functions and packages are one of the great strengths
of R. Let’s walk through how you install and use a new package. 13

The first step is to install the ”gmodels” package.

install.packages("gmodels")

You may be prompted to choose a ”CRAN mirror”. ”CRAN” stands for the Com-
prehensive R Archive Network. A ”mirror” is a server that makes the package files
available. The sites are mirror-like in that it should not matter which one you
choose. There may be some (small) speed benefit to choosing a site geographically
close to you. After you select a CRAN mirror, R will install the files.

Installing a package does not mean that it is ready for use. Installing a package
means it is now available on your machine if and when you want to use it. You still
need to bring the files or library that make up the package into your workspace. To
bring the package into your workspace, you will use the library() function.

library(gmodels)

A couple of important notes. When you install the package using install.packages,
you need to put it in quotes. When you load the package into your workspace
using library() you don’t need quotes. You only need to install a package with
install.packages once from CRAN. You need to load a package with library() every
time you want to use it.14

Now let’s see what a cross tabulation looks like using CrossTable().

CrossTable(infert$parity, infert$education)

4.5 plots

A picture is worth a thousand words. The workhorse of R graphing is the plot()
function. Often plot is smart enough to return the type of graph we want.

plot(infert$education)

But often, it is not. Try using plot() to graph parity or age

13This might not work on the classroom machines, which may block access to executable files.
14If there are packages that you use a lot, there are ways to automatically load them when you

start up R. The details vary depending on your operating system, but they all involve editing a
text file that R looks at every time you start up R.

14

plot(infert$parity)

plot(infert$age)

Using table() to prepare the data is a common approach to getting informative initial
plots of count or integer data.

plot(table(infert$parity))

Try plotting a table of age values.

Sometimes, plot() is just the wrong choice.

hist(infert$age)

4.6 the US Arrest data set

Base R comes with a data set about violent crime rates in the United States called
“USArrests”. Try the following:

1. Load the USArrests data set.

2. How many observations and how many variables are in the USArrests data
set?

3. What was the average murder rate in the US? What was the highest murder
rate and what was the lowest murder rate?15

4. Plot a histogram of assault arrest rates in the United States.

5 calculations

R is a remarkably powerful and robust statistical computing language. It is also a
humble calculator and can perform spreadsheet calculation. Here are a couple of
exercises to get you used to doing calculations in R.

5.1 temperature conversion

The following formula converts temperatures from the Fahrenheit scale to the Celsius
scale: C = (F − 32)x5

9

15Want to know which state had the lowest rate? Type and enter the following:
USArrests[USArrestsMurder == min(USArrestsMurder),]

15

Use the assignment operator to create a vector data object called ”f” of Fahrenheit
temperatures from 95 to 104, incrementing by 0.116 Create a vector of celsius values
called ”c”, using the formula above to convert the Fahrenheit values in the vector
”f”.

Use the cbind() function to create a matrix based on the Fahrenheit and Celsius
temperature vectors you created.17 Search for help on cbind if you need to using
help(cbind) or ?cbind.

5.2 body mass index

The formula for body mass index is BMI = kg/m2 The conversions for weight and
height are: 1kg = 2.2lb and 1m = 3.3ft

Calculate your body mass index. What would your body mass index be if you lost
5%, 10% or 15% of your current weight?

5.3 AIDS transmission

In his book Innumeracy, John Allen Paulos states that the probability of transmit-
ting the AIDS virus from an infected to an uninfected person in one heterosexual
act is 1/500. Using the basic probability concept that the complement of an act not
occurring is 1 minus the probability of an act occurring, what is the probability of
not transmitting the AIDS virus in a single heterosexual act?

What is the probability of not transmitting the AIDS virus in a daily heterosexual
act over the course of a year? 18

Recalculate the above two probabilities with the risk decreased to 1/5000 through
condom use.

5.4 cumulative risk

In epidemiology we can use the exponential formula to calculate the risk of an event:

R(0, t) = 1− e−λt (1)

where t is the time to the event and λ is the rate at which the event occurs.

16Hint: Use the sequence function. seq(95,104, 0.1)
17extra credit if you can name the columns
18hint: multiply individual probabilities to get an over all probability

16

Assuming that in the US influenza occurs at a rate of 10 infections per 100,000
person-years of observation, we can create a table of the cumulative risk of influenza
in a population over 1, 5 and 10 years.

We begin by defining the variables in our calculation. First we define the rate at
which influenza is transmitted. Then we create a vector of three elements for the
three years in which we are interested.

lambda <- 10/100

t <- c(1, 5, 10)

Substituting the variables we created above, write an equation to create a vector of
risks called ”risk” 19

Now, use cbind() to create a matrix or table of the rate, years and cumulative risk.

5.5 attributable fractions

The attributable fraction is the proportion of disease among exposed people that is
caused by an exposure. We can calculate it with the formula:

AF = (Riskexposed −Riskunexposed)/Riskexposed = 1− 1

RR

Assuming that the risk of some disease is 1 in 100,000 among unexposed people,
create a table of attributable fractions for exposures that increase the risk to 1 in
50,000, 1 in 10,000 and 1 in 1000.

An important concept about attributable fractions is that the calculation applies
to the exposed cases. There are, invariably, cases in a population among unexposed
individuals. We can adjust for this and calculate a measure called the population
attributable fraction by multiplying the attributable fraction by the proportion of
all cases represented by the exposed cases: AFpop = AF · exposedcasestotalcases

Let’s say that 500 of a total of 1400 cases of our hypothetical disease occurred ex-
posed individuals, with the remaining 900 cases occurring in unexposed individuals.
Add a column to the matrix you created above for the population attributable risk.

6 rates, risks, odds and logits

Epidemiology often involves measuring rates and risks.

19Hint: The exponential function is exp()

17

Rates are how frequently something occurs over some period of time. Rates can
never be negative and (depending on how short a period of time we are considering),
range from zero to infinity. A risk is a probability of an event occurring, and is
classically calculated as the number of times something occurs over the number of
times in which it can occur. Like all probabilities it is confined to values between 0
and 1.

Much of the statistical modeling done in epidemiology has involved transforming
risks, which are constrained to 0 and 1, into outcomes that are amenable to linear
models that can range from negative to positive infinity.

One useful approach to this problem has been the logistic transformation. It involves
two steps. First, we take our risk measurement, and extend it to include values
beyond 1. We do this by taking the odds of the probability. Odds are simply the
probability of an event occurring over the probability of the event not occurring, or
P/1 − P = Risk/1 − Risk. Second, we take the log of the odds. This effectively
establishes a linear model that can range from minus to plus infinity.

We can use R to illustrate this process and how it affects the basic shape of a
model. We’ll use the curve() function which plots a formula. (Look at the help
page of curve()). First we plot a series of odds

curve(x/(1 - x), 0, 1)

Second, we plot the log of the odds.

curve(log(x/(1 - x)), 0, 1)

6.1 HIV transmission

Let’s explore risks, odds and log odds. The following table lists the rate of HIV
transmission by type of exposure.

Rate per 10,000 exposures

Blood transfusion (BT) 9,000
Needle-sharing injection-drug use (IDU) 67
Receptive anal intercourse (RAI) 50
Percutaneous needle stick (PNS) 30
Receptive penile-vaginal intercourse (RPVI) 10
Insertive anal intercourse (IAI) 6.5
Insertive penile-vaginal intercourse (IPVI) 5
Receptive oral intercourse on penis (ROI) 1
Insertive oral intercourse with penis (IOI) 0.5

For each exposure type, calculate the risk, the odds and the log odds. Combine

18

them into a matrix. Using a simple plot() command with the option type=”l” for
line, graph the odds and the log odds.

6.2 Scottish Health Study

In the Scottish Health Study 85 of 1821 people who lived in rented apartments had
coronary artery disease, compared to 77 of 2477 people who owned their homes.

• Create a named 2-by-2 matrix object from this data

• Calculate the row totals. 20

• Calculate the risk ratio21 and odds ratio for these data. 22

• Create a matrix of the risks, relative risks, odds and odds ratios

7 cross tabulations and stratified analysis

7.1 UGDP

Let’s return to the University Group Diabetes Program data. This time we’ll work
with a text file of individual observations. I downloaded these data from Tomas
Aragon’s site. There are three variables: Status (Survivor or Death), Treatment
(Placebo or Tolbutamide) and Age Group (older or younger than 55).

Begin by using the read.csv() function to read the data into R. To do this, go to
the course website and locate the file called ”ugdp” under the right-hand resource
list. Right click on the link to get the path information and paste this information
into the read.csv() statement to read the data into R. Remember to put the path
in quotes. Use the options header=TRUE and stringsAsFactors=FALSE options.23

Remember to assign the function to an object. I will be using the name ”ugdp”.

• How many observations are in the data set?

• How many participants received Tolbutamide?

20Hint: Use apply()
21a risk is the number of occurrences over the population; a risk ratio is the risk in the exposed

over the risk in the unexposed; odds are risk over 1 minus the risk; and an odds ratio is the odds
in the exposed over the odds in the unexposed

22Hint: Use the row totals to calculate risks for each groups. Use these two risks to calculate a
risk ratio. Use the risks (again) to calculate the odds for the two groups. Use these two odds to
calculate and odds ratio

23if you don’t know what those options do, you look at the help file for read.table by typing
help(read.table)

19

http://medepi.com/data/
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-6/

• How many participants were under the age of 55?

Calculate the odds ratio for the association of tolbutamide with death. There are
a couple of ways you can do this. You can create a matrix by cross tabulating
treatment with outcome and do a cross multiplication (adbc) by indexing the individual
cells by row and column. Or you can take the approach from the Scottish Health
Study exercise. With either approach, you may find that it will help to reverse the
rows To reverse the rows of a matrix, index it with [2:1,].

Now calculate a confidence interval for the odds ratio using the following formula
which comes from Kenneth Rothman’s ”Epidemiology: An Introduction”:

ORCI = e
ln(OR)±1.96

√
1
a
+ 1

b
+ 1

c
+ 1

d (2)

Where a,b,c,d refer to the cell values in a cross-tabulation of exposure by outcome.

7.1.1 epitab()

Another nice thing about R for epidemiologists, is that many folks have taken the
time to write the kinds of formulas we frequently use, and have been kind enough
to share them in the form of R packages. One such package is ”epitools”.

• load the epitools package 24

• calculate the odds ratio for the ugdp data using the epitab() function. 25

7.2 the cars data set

The text file ”cars” contains the following variables:

safety: safety score (1=Below Average, 0=Average or Above)
type: type of vehicle (Sports, Small, Medium, Large, and Sport/Utility)
region: manufacturing region (Asia, N America)
weight: weight of the vehicle in thousands of pounds

7.2.1 unstratified analysis

• Go to the course website and locate the file under the right-hand resource list.
Right click on the file to get the path information and paste this information

24library(epitools)
25Search for help on the epitab() function to learn a little more about it

20

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-6/

into a read.table() statement to read the data into R. Remember to put the
path in quotes. Use the header=TRUE and as.is=TRUE options.26

• Print out the first five observations using head() or indexing. You will have had
to have created a data object when reading in the file. Look at the structure
of the car data object using str().

• Use prop.table() to determine the proportion of cars manufactured in North
America. 27

• Use table() to create a matrix object cross tabulation of region by safety. Use
[,2:1] indexing to reverse the columns of this matrix so unsafe cars are in the
first column.

• What are your initial observations about the safety of vehicles manufactured
in Asia vs. North America?

• Load the epitools library, and run epitab on the region by safety matrix you
created. What is the odds ratio for the association of region and safety?28

• If you want, test the statistical significance of the association of region and
safety by using chisq.test() to calculate a chi square statistic.

7.3 stratified analysis

There may be a third factor that accounts for the apparent association of one factor
with another. In epidemiology, this is termed confounding and the third factor is
called a confounder. In this example, the size of vehicles manufactured in Asia vs
North America may be confounding the association of region with safety because
the vehicles manufactured in North America may be larger. We can look at the
effect of a third variable or possible confounder by stratifying our cross tabulations
by levels of this third factor.

• Dichotmize the type variable into big and small cars, where big refers to Large
and Sport/Utility, and small refers to all others. You will have to do some
indexing.

– Create a logical vector called “big” by using the assignment operator
and a statement for Large or Sport/Utility vehicles. Remember to use
the double equal sign (= =) equivalence operator and put the variable
names in quotes.

26if you don’t know what those options do, you should look at the help file for read.table by
typing help(read.table)

27hint: run prop.table on a table object created with table()
28as noted in previous exercises, an odds ratio may be considered a way to approximate the risk

of one factor relative to another factor

21

– Create a new variable, attached to the ”car” data frame you read in,
called cat. Assign the character ”big” to those rows of observations that
are indexed as TRUE for big and assign the character ”small” to those
rows that are indexed as FALSE for big.29

– Print out the new variable and the first 5 observations of the data frame
to make sure your variable is formatted correctly.

• Use xtabs() to create a 3-level array object of region by safety by this new cat
variable you just created.30 This is our stratified table. Look at the structure
of this array object. Print out the array object and look at the cell numbers
for the association of region with safety. Look at the structure of the array.

• We now will look at the association between region and safety within the two
strata of car size category. Do do this, we will first create two separate 2-by-2
matrix objects, one for each level of car category. Then we will calculate an
odds ratio for the association of region with safety for each table. The first
step is to separate out the two levels of the array object, and this will (again)
require indexing.

– create a two-by-two matrix of the large vehicle strata of the array by
indexing the array using the name of the level you want. If you need to,
print out the array again to remind yourself of the names of the levels.
31

– Using the same approach, create a matrix object from the small vehicle
strata of the array.

• Once you have two matrices based on the levels of the array, use epitabs()
to calculate odds ratios. You will have to reverse the columns to put riskier
vehicles in the first column. Use args(epitabs) to learn how to do this within
the epitabs() function itself.

• Does the apparent association of safety by region change when you look at it
within strata of car size? If it does, you may want to calculate a measure of
association that controls for that third, possibly confounding, variable. One
such statistic is called the Mantel-Haenszel Odds Ratio.

• There is an R function that will return a Mantel-Haenszel odds ratio. To
search for it, type:

??mantel

29It’s important that you begin to get comfortable with these kinds of manipulations and indexing,
but I understand if you feel the need to peek at the solution...

30Again, if you’re unsure about how to use a function, use help.
31This is why I like to use xtabs() to create these arrays. It automatically names the levels

making indexing a little easier

22

You will get a number of functions that include some variant of your search
term. Click on the info for the mantelhaen.test() function. Read how it is
used and the arguments it takes. Run the function on your 3-level array. You
will have to reverse the columns of the array dimension for safety by using
the 2:1 index trick for the correct dimension. 32

• The results of the mantelhaen.test() will return an odds ratio when submitted
a 2-by-2 object. This odds ratio is a measure of the association between the
first two levels of the array (here region and safety) stratified by or controlling
for the third level (here car size category). Compare this estimate to that for
the unadjusted estimate from the first part of this exercise.

7.3.1 stratified analysis of UGDP data set

Let’s return for a moment to the UGDP data set you created in the previous exercise.
You will by know appreciate that there was an apparent and paradoxical association
of tolbudatamide with death. Compare the unadjusted measure of effect with an
adjusted measure of effect obtained with a Mantel-Haenszel odds ratio. Is there any
evidence of confounding?

8 making sense of the *apply() family of functions

Just like the popular Apple marketing phrase ”There’s an APP for that”, you could
say ”There’s an *APPly for that.” If one exists, using one of the *apply() functions
is invariably more efficient and faster that coming up with a loop or other hack.
There are enough of them, that you can get lost in the thicket of variants. It helps
to work through some examples to see the differences. 33

8.1 apply()

Use apply() to apply a function to the margins or dimensions of a matrix or array.
In plain(er) English, to get things like totals for rows or columns. For example:

m <- matrix(round(rnorm(16, 20, 10)), 4, 4)

m

apply(m, 1, min)

32Again, better that you try to work this out for yourself, but the answer is in the solutions
section

33Much of this discussion comes from a very nice post on stack overflow

23

http://stackoverflow.com/questions/3505701/r-grouping-functions-sapply-vs-lapply-vs-apply-vs-tapply-vs-by-vs-aggrega

Here’s what happened. We applied the min() function to the first dimension of the
matrix. The first dimension is the row. So, for the first row ([1,]) the minimum
value is 21. For the second row ([2,]) the minimum value is 16. For the third row
([3,]) the minimum value is 14. And for the fourth row ([4,]) the minimum value is
8.

Let’s try the sum.

apply(m, 1, sum)

These are the row totals. Your turn. Write a statement to calculate the column
totals.

Now for a three-dimensional array. We have data on the ages of people in a placebo
controlled study. We have information on the participants gender, race (white,
african american, hispanic, other), and treatment status. We can imagine an array
with three dimensions (age, race, treatment):

a <- array(round(rnorm(16, 20, 10)), dim = c(2, 4,

2))

a

How many rows are there in this data object? You might be tempted to say 4, but
there are, in fact, 2 rows. One for each gender. We designed it that way. So, if we
wanted to compare the ages of males and females, we would get two results.

apply(a, 1, mean)

Now, you try. What is the mean age of treated females vs. untreated females? Let’s
make life a little easier by naming the dimensions.

sex <- c("male", "female")

race <- c("w", "b", "h", "o")

tx <- c("yes", "no")

dimnames(a) <- list(gender = sex, race = race, treatement = tx)

a

Now, let’s use apply to get the mean age of treated vs. untreated females.

apply(a, c(1, 3), mean)

apply() is useful for these kinds of things. If you are just interested in marginals
for matrices, you’re better off using colMeans, rowMeans, colSums, rowSums, or the
even more convenient addmargins

24

8.2 tapply()

You don’t really see a lot about tapply() in the general R community, but it’s
a fairly straightforward way to group or stratify observations, so it’s useful for
epidemiologists. The key is the idea of an indexing or grouping variable. Say we
have the ages of 10 patients drawn from 5 clinics and we want the mean age for each
clinic. 34

dat <- data.frame(age = (round(rnorm(10, 5, 1))), clinic = sample(c("a",

"b", "c", "d", "e")))

tapply(datage, datclinic, mean)

We can get more involved, say in addition to age and clinic, we have treatment
status, and let’s up the number to 100 patients. Now let’s get the mean ages for
patients by clinic and treatment status.

dat <- data.frame(age = (round(rnorm(100, 5, 1))),

clinic = sample(c("a", "b", "c", "d", "e")), treatment = sample(c("Tx",

"noTx")))

b <- tapply(dat$age, dat[, c(2, 3)], mean)

b

There is another function, called by() that will accomplish essentially the same thing
as tapply().

c <- by(dat$age, dat[, c(2, 3)], mean)

c

The main difference is that tapply() returns a matrix, and a matrix is easy to work
with in R, i.e. to extract elements and conduct additional analyses. by() returns a
”by” object, that might be less tractable to additional analyses.

class(b)

class(c)

8.3 lapply()

The ”l” in lapply() refers to list. Use this function when you want to apply a function
to each ”bin” of a list in turn and get a list back. As I’ve mentioned, because it’s so
flexible, lists are used a lot in R, especially for the results or summaries of statistical
tests and functions.35 So having a way to operate directly on the elements of a list

34Note that I’m letting data.frame() recycle additional values for the clinic.
35lapply() lurks beneath many other functions in R

25

can be useful when extracting and working with the results of statistical models in
R. Let’s see how lapply() works.

First, we’ll create a simple list of numeric objects:

l <- list(a = 5, b = 1:5, c = round(rnorm(20, 2, 1)))

l

Now, let’s find the length and the sum of each bin.

lapply(l, length)

lapply(l, sum)

Notice that the results are lists themselves.

8.4 sapply()

sapply() is like lapply() but it returns a simplified (hence the ”s”) result, i.e. a
vector rather than a list.

sapply(l, length)

sapply(l, sum)

sapply() can do some more advanced and tricky things, like coercing results into
a matrix or into an array, but that is another subject, and we won’t go into here.
There is a version (essentially) of sapply() called vapply() that can be tweaked to
run more quickly, but I’ve never used it.

8.5 mapply()

mapply() is one of those functions that doesn’t seem to make sense until you have
a use for it, and then you wonder how you could possibly have accomplished your
task without it. In brief, it will apply a function to all the first elements of a list
or set of vector, then to all the second elements of a list or set of vectors, then the
third, etc... To get a sense of what it does, imagine a list object that contains three
”bins”, bin1=a,b,c; bin2=d,e,f; bin3=g,h,i. If you pass the sum function and this
list to mapply(), it will add things up as follows: a+d+g b+e+h c+f+i

Let’s see it in action.

v1 <- 1:5

v2 <- 6:10

v3 <- 11:15

v1

v2

26

v3

mapply(sum, v1, v2, v3)

8.6 other *apply functions

There are other (less common) *apply functions. rapply() allows you to control how
functions are applied to list bins. So you can, for example, specify that the function
is applied to just the first element of each list bin. Then there is eapply() that allows
you to apply functions to R environments. Clearly, you’d have to know what an R
environment is, and have a reason to manipulate it. If not, you will not have use
for eapply().

9 indexing to manipulate data

Indexing is the key to working with and manipulating R data. There are three ways
to index data in R:

• position

• logical vector

• name

Run the following to see an example of each type of indexing.

x <- c(chol = 234, sbp = 148, dbp = 78, age = 54)

x

x[1] # by position

x[x > 150] # by logical

x["chol"] # by name

You can use indexing to replace or change a data entry.

x[1] <- 250 #by position

x[x < 100] <- NA # by logical

x["sbp"] <- 150 # by name

x

Let’s look at the three approaches to indexing in a bit more detail.

27

9.1 indexing vectors

9.1.1 by position

x <- 1:40

x[11] #only the 11th element

x[-11] #exclude the 11th element

x[11:20] #members 11 to 20

x[-(11:100)] # all but members 11 to 20

9.1.2 by logical

R uses the following symbols to establish logical relationships between variables.

== IS equivalent to

! is NOT

& AND

| OR (if either or both comparison elements are TRUE)

xor EITHER (element-wise exclusive or operator, if either,

but not both, comparison elements TRUE)

&& || special operators, control flow in "if" functions, only the first

element of logical is used.

In addition, the which() function returns an integer vector of positions from a
Boolean operation, for example

age <- c(8, NA, 7, 4)

which(age < 5 | age >= 8)

Here, the positions 1 and 4 in the vector ”age” meet the Boolean definition.

To use a logical expression to index R data:

1. create a logical vector

2. use the logical vector to index data

Let’s take a look at an example. First create three vectors of related data.

names <- c("dopey", "grumpy", "doc", "happy", "bashful",

"sneezy", "sleepy")

ages <- c(142, 240, 232, 333, 132, 134, 127)

sex <- c("m", "m", "f", "f", "f", "m", "m")

Now, do some indexing.

28

young <- ages < 150 #create logical vector

names[young] #index name vector using logical vector

names[!young] # old dwarves

male <- sex == "m" #logical vector male dwarves

names[male] #index names using logical vector males

names[young & male] # young male dwarves

One important use of logical indexing is to categorize a continuous variable.

simulate vector with 1000 age values

age <- sample(0:100, 1000, replace = TRUE)

mean(age)

sd(age)

agecat <- age # make copy

replace elements agecat with strings for q

category

agecat[age < 15] <- "<15" # creating character vector

agecat[age >= 15 & age < 25] <- "15-24"

agecat[age >= 25 & age < 45] <- "25-44"

agecat[age >= 45 & age < 65] <- "45-64"

agecat[age >= 65] <- "65+"

table(agecat) # get freqs

9.2 indexing matrices and arrays

A vector has only one dimension, so it is indexed by a single number in a bracket.
To index matrices and arrays, you have account for their additional dimensions.

9.2.1 indexing matrices

Create the following matrix.

m <- matrix(round(rnorm(16, 50, 5)), 2, 2)

dimnames(m) <- list(behavior = c("type A", "type B"),

MI = c("yes", "no"))

m

Now do some indexing.

1. by position

m[1,] #first row

29

m[1, , drop = FALSE]

m[1,2] # cell "d"

2. by name

m["type A",]

m[, "no"]

3. by logical

m[, 2] < 45 # logical vector

m[m[, 2] < 45] # data

@

You can achieve increasing levels of precision and complexity with indexing. In the
following statement, (don’t submit it, it’s just for illustration) the extra comma after
3 tells R to return all the rows in x for which the 1st column is <3.

x[x[,1]<3,]

the extra comma after 3 tells R to return all the rows in x for which the 1st column
is <3

The functions lower.tri() and upper.tri() use indexing to return the positions below
or above a matrix.

m2 <- matrix(round(rnorm(81, 50, 5)), 3, 3)

m2

lower.tri(m2)

upper.tri(m2)

m2[lower.tri(m2)]

9.2.2 indexing arrays

Create the following array.

a <- array(sample(10:70, 8, rep = T), c(2, 2, 2))

dimnames(a) <- list(exposure = c("e", "E"), disease = c("d",

"D"), confounder = c("c", "C"))

a

Now, index to return the cell count for unexposed, diseased, confounder negative
individuals...

1. by position

a[1,2,1]

2. by name

30

a["e","D","c"]

3. by logical

a[a==33]

9.3 indexing lists

Indexing lists can sometimes be challenging. Recall the bracket notation for lists,
where double brackets refer to the ”bin” of like objects, and a following single bracket
refers to the contents of that bin.

l<- list(1:5, matrix(1:4,2,2),

c("John Snow", "William Farr"))

1. by position

l[[1]]

l[[2]][2,1]

l[[3]][2]

2. logical

char <- sapply(l, is.character)

char

epi.folk<-l[char]

epi.folk

9.3.1 indexing the results of modeling

Indexing lists comes in handy when working with the results of statistical models,
which frequently return results in the form of lists. Fortunately, most package
authors return the results as named lists.

Work through the following conditional logistic regression of abortion and infertility
to see an example of extracting list elements from the results of a model.

data(infert)

library(survival) # package with clogit()

mod1 <- clogit(case ~ spontaneous + induced + strata(stratum),

data = infert)

mod1 # default results (7x risk c spont AB, 4x induced)

str(mod1)

names(mod1) #structure, names

mod1$coeff # name to index result (list element)

31

summod1 <- summary(mod1) #more detailed results

names(summod1) #detailed list components

9.4 indexing dataframes

Data frames can (generally) be indexed like matrices, with the added advantage of
being able to use column (variable) names.

Run through this code to get a sense of how dataframes can be indexed.

data(infert)

1. position

infert[1:4, 1:2]

infert[1:4, 2] <- c(NA, 45, NA, 23)

infert[1:4, 1:2]

2. name

names(infert)

infert[1:4, c("education", "age")]

infert[1:4, c("age")] <- c(NA, 45, NA, 23)

infert[1:4, c("education", "age")]

3. logical

table(infert$parity)

change values of 5 or 6 to missing

infert$parity[infert$parity==5 | infert$parity==6] <- NA

table(infert$parity)

table(infert$parity, exclude=NULL)

In the following perhaps more realistic example you will read in a set of anonymized
hospital discharge data, and then index it in various ways.

url <- "http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/sparcsShort.csv"

sparcs <- read.csv(file = url, stringsAsFactors = F)

• index rows

brooklyn<-sparcs[sparcs$county=="59",]

nyc<- sparcs$county=="58"| sparcs$county=="59"|

sparcs$county=="60"| sparcs$county=="61"| sparcs$county=="62"

nyc.sparcs<-sparcs[nyc,]

• index columns

dxs<-sparcs[,"pdx"]

32

vars<-c("date", "pdx", "disp")

my.vars<-sparcs[,vars]

• index rows and columns

sparcs2<-sparcs[nyc,vars]

• variables to include

brooklyn.sparcs<-subset(sparcs, county=="59",

select=c(date, pdx,disp))

• range of variables

nyc.sparcs<-subset(sparcs, county=="59":"62",

select=c(county, pdx,disp))

• excluding rows

nyc.sparcs<-subset(sparcs, county=="59":"62",

select=-c(county, pdx,disp))

10 logistic regression: the Titanic

The file titanic.csv is a comma-separated value data file that contains information
about the passengers on the Titanic.36

• Go to the course website and locate the file under the right-hand resource list.
Right click on the file to get the path information and use this information
to read the data into R. In this case, because it is a .csv file, you have two
possible approaches. You can use read.table() with the appropriate option to
read in a comma-separated file. Or you can use read.csv().

• Look at the structure and the first 5 observations (rows) of the R data object
you created. Look at the names of the variables 37

• The variable survived has two levels, with 1 meaning the person lived. The
variable sex also has two levels. Create an object cross tabulating gender by
survival status, and use epitabs to calculate an odds ratio for the risk of death
by gender. Look at the help file for epitab(). Are the columns of the table
object your created in the correct order? Are the rows in the correct order
to demonstrate the risk associated with being a male? Correct the table, and
re-run the analysis.

36For more information on this data set, install the R package ”PASWR” and search for help on
”titanic3”

37If you don’t know how to do that ?names is a good place to start looking for information

33

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-6/

• We will now use logistic regression to do the same analysis. Use glm() to create
an object from a model with survival as the dependent or outcome variable,
and sex as the independent or explanatory variable.38

• Print the model object. Most often a summary() of the model object will
be more informative. To view the confidence intervals for the model, use
the confint() function. To exponentiate the results use the exp() function.
You can exponentiate the model coefficients by appending $coefficients to the
name of the model object and exponentiate an object to which you assign the
confidence intervals.

• Are you modeling the event in which you are interested? You can address this
in one of two ways. First, and most intuitively, you can recode the outcome
variable. The following snippet of syntax will accomplish that.

surv2<-(titanic$survived-1)*-1

Substitute the recoded variable into your model statement and review the
results, including exponentiated coefficients.

• A bit more unintuitively (at least to me) you can achieve the same result by
recoding the exposure variable. To re-order the exposure variable to calculate
the risk of male gender, you can use the relevel() function. Substitute the
following for the sex variable in your glm model: 39

relevel(titanic$sex, ref="male")

• One of the strengths of a logistic regression approach compared to stratified
analysis is that it will more easily accommodate controlling for multiple po-
tentially confounding variables. All you have to do is add them to your model
statement preceded by a plus sign. Create a new model controlling for age
and controlling for passenger class 40

11 survival analysis: papal longevity

Readers of Papal history may be struck by (among many things) how fre-
quently Popes died of ”fever”. The word malaria, in fact, arose in reference to
the ”bad air” (”mal aria”) surrounding Rome. Is it possible Popes who were

38Hint: glm(outcome explanatory, family=binomial(link=”logit”))
39This can be a bit confusing. As noted in the relevel() help page, ”the (factor) level specified by

ref is first and the others are moved down.” In this case, this effectively makes males the exposure
level.

40Use relevel(pclass, ref=”3rd”) for the class variable to demonstrate the increased risk for third
class

34

born in or near Rome had some immunological advantage? We need wonder
no more.

Go to the course R page here. On the sidebar locate and download the R data
file called ”popes”. Use the R package ”survival”, as described here to answer
the following questions:

1. Did Popes who were born in Rome survive longer from birth to death?

2. Did Popes who were born in Rome survive longer from election to death?

For each analysis, provide Kaplan-Meir curves and Log Rank tests.

35

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-6/
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/packages.pdf

	working with objects
	vectors
	using the assignment and concatenation operators to create vectors
	combining vectors to create tables
	creating vectors and tables from individual observations

	matrix
	Calculating marginal totals

	lists
	create your own function and store the results as a list

	class and mode of an R object
	ordered factors
	months example
	ses example

	exploring data sets
	the infertility data set
	preliminary statistics
	frequency tables
	installing and using a package
	plots
	the US Arrest data set

	calculations
	temperature conversion
	body mass index
	AIDS transmission
	cumulative risk
	attributable fractions

	rates, risks, odds and logits
	HIV transmission
	Scottish Health Study

	cross tabulations and stratified analysis
	UGDP
	epitab()

	the cars data set
	unstratified analysis

	stratified analysis
	stratified analysis of UGDP data set

	making sense of the *apply() family of functions
	apply()
	tapply()
	lapply()
	sapply()
	mapply()
	other *apply functions

	indexing to manipulate data
	indexing vectors
	 by position
	 by logical

	indexing matrices and arrays
	indexing matrices
	indexing arrays

	indexing lists
	indexing the results of modeling

	indexing dataframes

	logistic regression: the Titanic
	survival analysis: papal longevity

