epidemiology and disasters response, recovery and research

Charles DiMaggio, PhD, MPH, PA-C

Director of Injury Research NYU Bellevue Division of Trauma and Acute Care Surgery New York, NY

> Presented at Harvard School of Public Health EH282 Injury Epidemiology and Prevention Charles.DiMaggio@nyumc.org

> > 24 April 2015

1

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

some conclusions about the role of epidemiology in disasters

- professional duty to be involved in disaster response
- public health role in disaster recovery and preparedness
- scientific *responsibility* to contribute to disaster research and risk assessment
 - disaster risk is complex
 - epidemiology can disintangle identify ways to mitigate and control risk
 - spatial analysis helpful in disaster epidemiology
 - Bayesian hierarchical modeling a great tool ...
 - ... but it comes with some additional analytic baggage

the study of the distribution and determinants of disease in (human) populations

- basic science of public health methods, study designs, statistical approaches
- descriptive agent, host environments
- analytic associations (causality?)
- statistics and chance

what is a disaster?

quantitative

- more than 100 deaths or \$1 million damage (Sheehan and Hewitt, 1969)
- the bradford disaster scale
 - global annihilation = magnitude 10
 - 25K deaths = magnitude 4.3
- legal "any natural catastrophe ...regardless of cause...which, in the determination of the President causes damage of sufficient severity and magnitude..."
- perception "ordinary people will tell us what disasters are if we listen to them" (Kroll-Smith and Gunter, in Qurantelli, 1998)

person the occurrance of more death, injury, disease, or psychiatric illness in a community than would be expected

time sudden, brief and intense causal mechanism

- natural vs. man-made
- "slow-moving disasters"
- place circumscribed by geography or political boundaries
 - * population and environmental vulnerabilities *
 "conditions prevalent in the...community (are) a better
 determinant of epidemiological impact than the physical
 characteristics of the event." (Sapir and Lechat)

disaster epi harvard sph

disaster epi harvard sph

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

Individual Disaster Response: 4 Groups of People

- killed
- injured require immediate assistance / evacuation
- affected can self evacuate
- involved present at the scene (or nearby) willing and able to help
 - the *first*, first responders

Government Disaster Response: Expect Delays

local

- should be prepared to be self sufficient for the first 48 hours
- state
 - governor may declare "state of emergency" for state resources and support, mobilize national guard,
 - local military commanders may respond under "military support to civil authorities" doctrine for 72 hours
- federal
 - state request "national disaster" declaration (via FEMA) for federal resources
 - DMATs disaster medical assistance teams, federally-sponsored, local groups medical professionals
 - NPS national pharmaceutical stockpile
- in cases of terrorism, FBI is considered the "lead" agency

Incident Command Structure

- scalable (expands and contracts)
- flexible (any incident)
- fire, police, ems function essentially same as in non disaster setting
- incident commander (most senior fire or police, but may be you...) and staff (public information, safety, medical,legal)
- operations (firefighting, security, EMS)
- planning (resources, documentation)
- logistics (communications, medical, food)

ICS Hierarchy



Figure: Incident Command Structure

disaster epi harvard sph

Before a Disaster: Plan

- Where is the disaster plan?
 - multiple copies in all areas
- Who should I call?
 - fire, police, personnel, public health
- How should I call?
 - land line, cell, public safety radio, amateur radio, VOIP, satellite
- Should I secure my facility?
 - may need to lock down your facility to control traffic, separate access for potentially contaminated vs. non-contaminated (decon area), family access, "worried well", media access
- Where can I get supplies?
 - plan on being on your own for first 48 hours

During a Disaster: Rescue

- Know Your Role
 - know where your disaster plan is
 - know who is in charge
- Risk from Patients
 - isolate for infectious diseases, biological agents (anthrax spores), radioactive or chemical agents (clothing, skin, breath, secretions)
- Risk from Environment
 - personal protective equipment (PPE); structural integrity (flooding, earthquake damage); contamination (water supply)
- Need for Evacuation
 - decontaminate for radiologic or chemical exposure *prior* to evacuation or transfer to ED

After a Disaster: Hazards

- communication is the first casualty
- trauma predominates early (first 2-3 days) then public health and chronic conditions
- electrocution kills
 - if water near electrical circuits, turn off power at main breaker
- people in vehicles are at greatest risk of drowning
- assume damaged buildings are unstable
- assume confined spaces are dangerous (toxic gases, explosions)
- dehydration and heat stroke in warm environments
- hypothermia in colder environments (working in water less than 75 degrees)
- avoid contact with potentially contaminated water, surfaces

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

pidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

2 epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

three recent disasters

assessing the impact of 3 modern disasters

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

a tale of two disasters

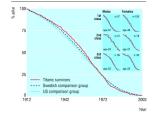
parameter	'72 Managua	'71 California
richter scale	5.6	6.6
geographic extent	100 <i>km</i> ²	1500 <i>km</i> ²
population exposed	420K	7 million
dead	5,000	60
injured	20,000	2,540

their hearts will go on

case fatality rate

class	men	women	children	total
1	.67	.3	0	.38
2	.92	.14	0	.59
3	.84	.54	.66	.62
total	.82	.26	.48	.62

C DiMaggio (New York University)



disaster epi harvard sph

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

disaster phases

preparedness interdisaster training, building, warning response emergency impact, extrication, treatment, food, shelter recovery post-impact surveillance, rehabilitation, reconstruction

a haddon matrix for disasters Noji and Sivertson

	PRE- DISASTER	DISASTER	POST- DISASTER
AGENT	identify potential terrorists		farming practices
HOST	discourage migration to disaster- prone urban areas	evacuation, shelter, (safe) food drops	prevent vol- unteer over- convergence
ENVIRONMENT	warning sys- tems	levees	forensic engineering analyses

vulnerability assessment

- map risks
 - previous events by location and frequency and impact
 - population density and characteristics
 - environmental hazards and vulnerable structures
- inventory resources
 - infrastructure
 - equipment
 - personnel
 - transportation
 - * communication
- training
 - pod drills, table tops
 - sns, surge capacity
 - education, outreach

emergency aid

- most deaths occur during the first hour
- most life-saving aid is provided by families, friends and neighbors
- external aid is often too late, and frequently inappropriate

'external disaster relief should focus on reducing population vulnerability and invest in structural changes to health care' (Sapir and Lechat)

health objectives

- prevent death
- treat injured and ill
- provide housing
- prevent illness due to communicable disease, lack of health care and malnutrition
- address acute psychiatric pathology and psychological distress

'generalized panic, paralyzing trauma or anti-social behavior rarely occur after major disasters' (Lazzari)

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

observation and surveys

• data to make informed decisions

- '...the sacrifice in promptness required to collect the information necessary to provide apt and well-directed aid is more than justified by the improved results'
- damaged infrastructure, no uniform definitions, multiple conflicting sources
 - 'injury surveillance questionaires ... prepared before a disaster (that) can be modified quickly' (Noji)

surveillance

the ongoing systematic collection, analysis, interpretation and dissemination of health data

traditional in place prior to disaster, active vs. passive non-traditional drop-in, syndromic (ED, pharmacy fills), relief workers, newspaper accounts, *spatial*

C DiMaggio (New York University)

C DiMaggio (New York University)

spatial analysis and mapping

- person good methods to *analyze* nested, correlated data, e.g glm, mixed models
 - place good methods available to *identify* geographic clustering, e.g. SatScan, Moran's I
- person-place Bayesian hierarchical models allow both identification and analysis
 - *link...* mapping hurricane sandy damage
 - *link...* images of japanese tsunami damage

Outline

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

epidemiology and disaster research

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

back to the future dr. john snow (1813-1858)

> "nature makes the experiments, and we watch and understand them if we can" (AB Hill)

back to the future rev. thomas bayes (1702-1761)

> "a Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule"

Outline

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

- planning
- surveillance

epidemiology and disaster research

- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

the problem(s) of spatial data

- any data anlaysis following a disaster is difficult
- spatial data has unique statistical issues
 - counts
 - irregularly arrayed (aereal vs. lattice)
 - population and geographic characteristics correlated in time and space
 - overdispersed (Poisson)

measuring risk spatially

SMR

- y_i observed count region i
- e_i expected count region i
- θ_i relative risk region *i* (unknown parameter)
- $smr = \frac{y_i}{e_i}$ crude estimate for θ_i
- but ... smr notoriously unstable and potentialy misleading
 - non-independent observations, over dispersed, sensitive to denominator e_i
 - WHO discourages use of smr's in maps

smoothing risk estimates

- number of approaches available
- Bayesian approach
 - demonstrated to be effective and stable
- establish the probability of a risk estimate (*the posterior distribution*) given the data we collected (*the likelihood*) and what we expected to see (*the prior distribution*)
 - $Pr[\theta|y] \propto Pr[\theta]Pr[y|\theta]$
- when in doubt, repeat: *the posterior equals the prior times the likelihood*

Gamma prior distribution

• the prior expectation of risk (θ) in spatial setting commonly defined as gamma ($\theta \sim \Gamma(a, b)$)

•
$$\mu = \frac{a}{b}$$
, $var = \frac{a}{b^2}$

- flexible
 - $\Gamma(1, b) \sim \text{exponential}$ • $\Gamma(\frac{1}{2}, \frac{1}{2}) \sim \chi^2$
- constrained to be positive
- null model: $\Gamma(a=b) \sim 1$

Poisson likelihood

- the distribution of rare events
- counts
- single parameter

•
$$Pois(\lambda) = e^{-\lambda^k/k!}, \mu = \lambda, var = \lambda$$

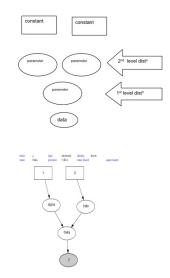
•
$$Pr[k] = \frac{\lambda^k}{k!} e^{-\lambda}$$

• observed spatial data: $y_i \textit{iid} \sim \textit{Pois}(\lambda_i = e_i \cdot \theta_i)$

- i.e. $E(y_i) = \lambda_i = \text{expected count x risk}$
- conjugate to Gamma (same family)

hyperparameters

- Bayesian approach puts distribution on parameters
- so each parameter has its own paramters
- $y_i \sim Pois(e_i \theta_i)$
- $\theta_i \sim \Gamma(\alpha, \beta)$
- $\alpha \sim exp(\nu)$, $\beta \sim exp(\rho)$



model statement

- # Poisson likelihood (data)
- # prior for relative risk
- # hyperpriors

the log-linear transformation

- log link: $ln(\lambda) = C1 + C2$
- where
 - $C1 = \beta x_i$ log-linear transformation
 - C2 = other terms (e.g. predictors, random effect, spatial effect)
- create analytic models from gamma-poisson

the random effects term

- theoretically useful way to account for unstructured heterogeneity in data (spatial or otherwise)
 - variance ('noise') > accounted by model
 - ?unmeasured confounding
- practically
 - partition the error or residual term $(\hat{\epsilon} \sim n l(0,\sigma^2))$
 - separate out variance component due to random effects, $\nu \sim nl(0, \sigma^2)$

conditional autoregression term (CAR)

captures structured spatial variability

- $\bullet\,$ like a bookend to the *unstructured* random effects term ν
- variation not accounted for by model or random effects term
- based on sets of 'spatial neighborhoods' (share a boundary)
 - $\mu_i \sim nl(\bar{\mu_{\delta_i}}, \tau_\mu/n_{\delta_i})$
 - where δ is a neighborhood of the $i^t h$ region and n_{δ_i} is the number of neighbors
 - the mean θ or risk in a neighborhood is normally distributed, with $\bar{\mu}$ the average of the μ 's in the neighborhood, and σ equal to the σ of the neighborhood μ 's divided by the number (δ) of spatial shapes in the neighborhood

coding CAR in WinBUGS

- use the car.normal() distribution
- requires an adjacency vector, weights, and list of number of neighbors for each region

b[1:J] ~ car.normal(adj[], weights[], num[], tau.b)

the updated (spatial) gamma-Poisson model log-link, random effects and CAR

- $y_i \sim Pois(e_i \theta_i)$
- $ln(\theta) = \beta_i + \nu_i + \mu_i + \hat{\epsilon}$, where
- $\nu_i \sim nl(0, \tau_{\nu})$
- $\mu_i \sim nl(\bar{\mu_{\delta_i}}, \tau_\mu/n_{\delta_i})$
- β_i is the intercept term and vector of regression coefficients for explanatory variables

spatial model statement

```
model{
for( i in 1 : m ) {
      y[i] ~ dpois(mu[i])
      mu[i] <- e[i] * rr[i]</pre>
      log(rr[i]) <- b0 +v[i] + h[i] # h structured (spatial)</pre>
                                       # v unstructured(random)
      r[i]<-(y[i]-mu[i])
                                       # r residual
      v[i]~dnorm(0,tau.v)
                                # normal prior on v
      b0~dnorm(0,tau.b0)
                               # normal prior on intercept
      h[1:m]~car.normal(adj[], weights[], num[], tau.h) # car term
      tau.b0~dgamma(0.001,0.001)
                                       # gamma hyperpriors
      tau.v<sup>~</sup>dgamma(0.001,0.001)
      tau.h~dgamma(0.001,0.001)
     }
```

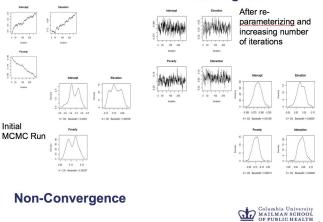
simulation in WinBUGS

- Monte Carlo Markov Chain (MCMC)
 - most reasonably realistic problems framed in Bayesian way do not have simple or closed solutions
- WinBUGS
 - implementation of MCMC
 - chooses samples using either Gibb's (for which named) or Metropolis Hastings
 - R2WinBUGS interface
- sample space and convergence (there is no free ride)
 - MCMC comes with additional responsibilities
 - is sampler moving accross the space?
 - did the chain converge?

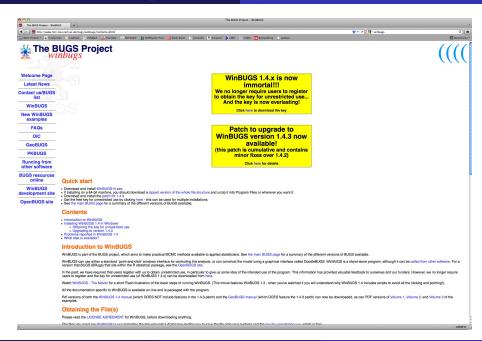
non-convergence

- not sampling from the posterior distribution so results not valid
- more informative priors for problematic variables
- drop or add variables
- * re-parameterize to improve sampling efficiency
 - center
 - standardize
 - log transform

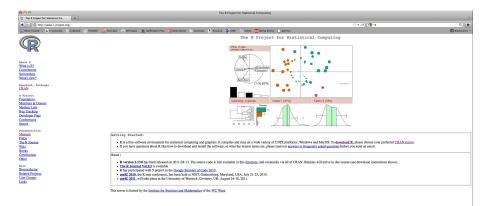
assessing convergence



Convergence



disaster epi harvard sph



201000

Outline

epidemiology and disaster response

- incident command structure: the language of disasters
- before, during and after a disaster

epidemiology and disaster recovery

- three modern disasters
- three earlier disasters

3 epidemiology and disaster preparedness

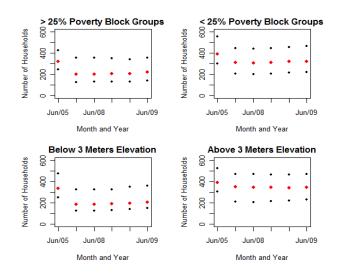
- planning
- surveillance

4 epidemiology and disaster research

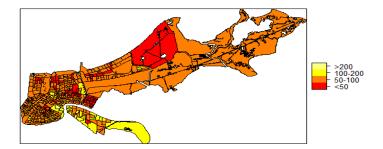
- Bayes, BUGS and R
- orleans parish before and after hurricane katrina

- repatriation measured by USPS delivery data
- June 2009 (observed) vs June 2005 (expected)
- θ_i estimates change in number of households receiving mail in a block group
- interested in decreased θ

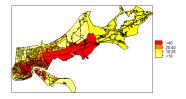
repatriation by SES and Geography



percent repatriation by block group



poverty and elevation choropleths



proportion below poverty level

elevation above sea level in meters

C DiMaggio (New York University)

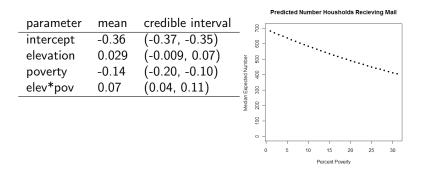
model statement

CAR, poverty, elevation, elev*pov

```
model{
for(i in 1:m ){
      y[i] ~ dpois(mu[i])
      mu[i] <- e[i] * rr[i]</pre>
      log(rr[i]) <- b0 + b1*((elevation[i]-3.7)/3.6)
                    + b2*((poverty[i]-28.4)/18.2)
                    + b3*((elevation[i]-3.7)/3.6)*(poverty[i]-28.4)/18.2))
                    + h[i] # CAR term
      r[i]<-(v[i]-mu[i])
                                      # r residual
      prob50[i]<-step(0.5-rr[i])
                                      # step function exceedence
                       3
      h[1:m]~car.normal(adj[], weights[], num[], tau.h) # car term
      b0~dflat()
                                # priors
      b1~dnorm(0,0001)
      b2~dnorm(0,0001)
      b3~dnorm(0,0001)
      tau.h~dgamma(0.001.0.001)
     }
```

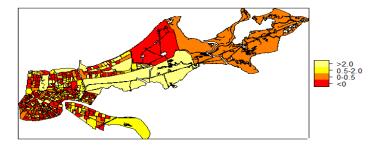
models compared using DIC (Bayesian analog of AIC)

some numeric results

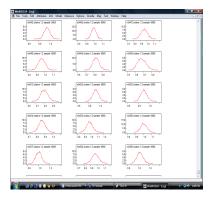


smoothed repatriation estimates

adjusted for poverty and elevation

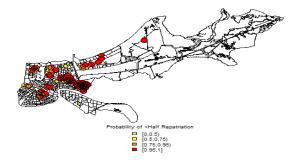


posterior probability of θ_i



can be used to map *exceedence*, or probablity greater than x

exceedence map



C DiMaggio (New York University)

conclusions (redux)

- as public health *professionals* epidemiologists have a *duty* to be aware of and involved in disaster response
- as a *public health* discipline, epidemiology has an essential *role* in preparedness and recovery
- as the basic *science* of public health, epidemiology has a fundamental *responsibility* to contribute to research that advances the body of knowledge about disasters
 - socioeconomics, behavior and geography intersect and interact in complex ways to mediate disaster risk
 - the role of epidemiology is to disintangle these competing and interacting risk to identify ways to mitigate and control the societal and health effects of disasters
 - spatial analysis can extend epidemiologic methods following disasters
 - Bayesian hierarchical modeling a great tool to explain spatial patterning of health outcomes and risk
 - but it comes with some additional analytic baggage (prior specification, convergence, interpretation)

Figure: Boston Sunrise

C DiMaggio (New York University)

disaster epi harvard sph